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Mean-field approximation for a limit order driven market model
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A mean-field variant of the model of limit order driven market introduced recently by Maslov is formulated
and solved. The agents do not have any strategies and the memory of the system is kept within the order book.
We show that the evolution of the order book is governed by a matrix multiplicative process. The resulting
stationary distribution of step-to-step price changes is calculated. It exhibits a power-law tail with exponent 2.
We obtain also the price autocorrelation function, which agrees qualitatively with the experimentally observed
negative autocorrelation for short times.
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[. INTRODUCTION count the realistic details of the price formation through the
book of orders. This mechanism was implemented in the
The complexity of market behavior, seen as a particulamodel set up by Maslo¥35] and a similar perspective was
example of a natural phenomenon, has fascinated physicisteen used in a recent series of papers by Matassini and Franci
for many yearg1]. The main source of interest comes from [36—38. The book of orders perspective to market modeling
a kind of critical behavior, made explicit by the power-law was empirically investigated in Refg39,4Q.
distribution and scaling in the economic time series, first With such a diversity of models, most of which give a
observed by Mandelbrofsee Ref.[2], and references plausible explanation of observed facts, a question arises:
therein and studied in detail by Mantegna and Starjlgy5] whether there is a common mechanism behind various ap-
and subsequently by many othdsee, e.g., Ref§6—11]). proaches, making them essentially equivalent. Indeed, it was
Scaling and multifractal properties call for an explanationfound that such a mechanism may be the multiplicative sto-
in terms of a model mimicking the behavior of individual chastic process repelled from zero, or the multiplicative-
agents in the market. The physicist's optimism in looking foradditive process. It was studied thoroughly by various au-
such a model might be strengthened by recent successestfiprs and in diverse contex{45,41-53. The goal we pose
modeling other social phenomena, e.g., in the cellularin this work is to show that essentially the same mechanism
automata models of trafficl2]. The idea consists in assum- is responsible for the power-law distribution of price changes
ing that the overwhelming complexity of a human being isalso in the limit order model.
irrelevant in certain special conditions: when driving a car,
only avery basic set of behaviors is at work. Similarly, it is II. LIMIT ORDER DRIVEN MARKET MODEL
assumed that a trading agent, when put on the floor, follows
only a limited set of instincts or acquired patterns. Therefore, Recently, Maslov and co-workerg35,39 proposed a
in this approach, the economic complexity is not due to thenodel, based on the assumption that there are two kinds of
intrinsic complexity of each agenas usual hand-waving Mmarket participants. Prudent investors place their orders at a
arguments by liberal opponents of “reductionism” state Prescribed price and a trade occurs as soon as there is anyone
but an emergent property of a large set of nonlinearly interaccepting that price. On the other hand, speculators buy and
acting simple units. sell at any moment at the price which is available in the
Many microscopic stock market models have emergednarket. The price signg(t) was found to have a power-law
during the last several years. One of the first ones was thgpectrum, with Hurst exponemi=1/4. The price changes
model introduced by Levy, Levy, and Solom¢ma3—15,  during a unit time intervak=p(t+1)—p(t) have probabil-
which captures essential features of the price fluctuations anity  distribution that follows clear power lawP(x)
explains also the power-law distribution of investor's wealth,~x~ %) in two regimes. For smalk the exponent is 1
which is the famous Pareto law. +a;,=0.6=0.1, while in the regime of large price changes
Another approach was used in the model of Bak, Pacthe exponentis + a,=3*0.2. These values are to be com-
zuski, and Shubik16]: buyers and sellers are represented bypared to the experimentally found values &;=2.5 and 1
particles subject to a reaction-diffusion process. The intro-+ a,=4, respectively{6,9—-11.
duction of a nontrivial strategy of the agents leads to a real- The presented mod¢B5] can be described as follows.
istic value of the Hurst exponent for the price fluctuations. AThere are orders to buy and sell placed on a straight line,
simpler version of the model was then solved analyticallywhich is the axis of the pricg. In a stable situation, all buy
[17]. A variety of other approaches were investigaf@d—  orders are lower than all sell orders, so that we can describe
34]. the state by single functiop(x), density of the orders, and a
The above mentioned models mainly do not take into achumber &, which is the last realized price. Then, alk ¢
correspond to buy, ak> ¢ to sell orders.
Two events can change the state. First, new limit orders
*Email address: slanina@fzu.cz may be dropped, such tha{x) — p(x) + n(x—&). We sup-
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pose the functiom(x) is equal in all events and is symmet-  Let us investigate first the consequence of an arrival of a
ric, n(x)= n(—x). Second, a market-price order can arrive.market-price order to buy. By definition, the price level in-
An order to buy an amourstresults in clearing all sell orders creases by, . As the density of orders is constant, average
up to the priceé+x, , where density on the right-hand side from the new price is un-
changed. If now another buy order arrives, it finds the same
density and the price change is the same too. Therefore, the
new value ofx, is equal to the old onex, —x, . On the
other hand, if now a new market order to sell arrives, there
The new price is theF— &é+x,, so thatx, is the price are no limit orders in the interval of widtk, below the
increment, while the new density ip(x)—[1—60(x  current price level, and when we go further down, there is a
— &) 0(é+x,.—x)]p(x). Analogical formulas will hold for constant density/x_. As a result, the price decreases by
the sell order. X4 +Xx_. Hence, the new value of_ is Xx_ —Xx,+X_.

As we can see, there are no strategies that would lead the To sum it up, the effect of the buy order consists in the
agents to perform specific actions. The model is barely storeplacement
chastic. The long-term memory of the system and thus a
possible power-law behavior stems from the order book, or Xy =Xy
the time-dependent density functigiix) that may keep ar- v
bitrarily old orders. X=Xyt Xo

f e p(X)dx=s. (1)
3

It can be expressed in matrix form
I1l. MATRIX FORMULATION

) o ) . o X—=X'=T,X (3
Our essential approximation to this model will consist in
supposing a uniform density of orders on each side from thevhere
current price levelé. In reality, both dropping new limit
orders and clearing them by market orders make the density 10
of states uneven and fluctuating. When supposing that after T = 1 1) )

an event the uniform density of states is restored, we make a

kind of “mean-field” approximation: the actual position of Similarly, for the action of a sell order we get

each limit order is not important, as if they were freely mov-

ing particles making an effective medium, within which the X=X"'=T_X, ®)
price fluctuates. A high density of the medium will result in
smaller price fluctuations and vice versa.

The density on the upper side will be denoged, on the 1 1
lower sidep_ . It is convenient to describe the densities in Tz( )
terms of the potential price changes, which would occur if a 01
market-price order arrives. They are simply =s/p, for
buy andx_=s/p_ for sell order. The numbers. form a
vector

where

(6)

Now we turn to the changes due to dropping limit orders.
It is necessary to specify the functiof(x), representing the
average volume of orders set at distamcieom the current
X price. As we already mentioned, we suppose it to be an even
X:( +)’ function. Moreover, the volume was supposed to be fixed,
X_ Jn(x)dx=v. We apply here the simplest choicg(x)
=v/2(5(x—d)+ 6(x+d)), which means that all new orders
which performs a stochastic process, as the dengitiesnd,  are placed at the same distanterom the current price,
therefore, the numbers.. are updated after arrival of each ejther below(buy) or above(sell). This distribution reflects
order. The dynamical rules of the process represent a simplihe fact that the limit orders are not typically set arbitrarily

fied version of the limit order driven dynamics. close to the current price but there is a certain minimum
There are three types of events: dropping of limit or-  offsetd.
ders, (ii) market-price order to buy, andii) market-price Dropping limit orders affects the vectot according to

order to sell. We suppose that all market-price orders havghe formula
the same volume and all limit order events the same vol-

umev. Further, we assume that market orders to buy and sell

occur with the same probability. In order to keep the total

number of limit orders constant on an average, we should

suppose that at a given moment there is a probabjity Indeed, a buyor sel) order will annihilate the amount/2
=s/(s+v) to drop a limit order. Each of the market-price from the just deposited limit order and amowntv/2 from
events(ii) and(iii) have then an equal probability {p)/2.  the original density of old limit orders. The shift is, therefore,
(Here we tacitly assume that the limit orders that are not mex. =(s—v/2)/p. . Writing v in terms of the probabilityp,
last forever. One can also investigate some realistic variantse., v=(1/p—1)s, we obtain the formuld7). So, in matrix
where the limit orders slowly die out. form we have

1
Xi—>§(3—l/p) Xz (7)
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X—X'=SX, (8) =
P(x>=mE:0 <1—p)pmf dx’P(x")
where 1\ m
3 [37p
_1( 1)(1 0) X8 x—ix’ — (12)
S=3 3—6 o 1) 9

and assuming a power-law tail of the probability distribution

) o in the formP(x)~x~1~ ¢, we obtain the following equation
The price changes only after a market order is issuedor the exponent:

while dropping limit orders leaves the price unchanged. So,

between two subsequent shifts of the pricez0 limit or- 1\ M«

ders can arrive, with probability?,,(m)=(1—p)p™. The > 3 3_5

change of the vectaX due to one market order amd limit E (1—p)p™ A =1. (12
m=0

orders isX— S™T.. X. When calculating the evolution of the
probability distribution forX, we should sum over all pos-
sible realizations. Hence, the probability distribution for the
vector X should satisfy the equation

As can be easily checked, apart from the trivial solution
a=0, it has a nontrivial solutionv=1, independent op.
Therefore, the distribution of price changes has a power-law
tail

%Z 2, | dX’ Prp(m)Px(X)(X=S"T,X") P()=x"2 (13)

Px(X)=
(10 Note that the calculation could be further simplified by
writing the equation analogical to E(L1), relating the prob-
ability distribution just after single step. Then, instead of the
sequence of steps consisting of one market order followed by
m limit orders we have one step being either limit or market
IV. DISTRIBUTION OF PRICE CHANGES order. This equation gives precisely the same power-law tail.
However, such an approach is slightly inconsistent, because
We will make a further approximation at this stage. Thesetting a limit order does not imply any trade, thus the price
matrix Sis simply a unit matrix multiplied by a constant. If change at this moment is zero.
the same were true also for the matrices, the process
would be reduced to a simple multiplicative random walk, V. PRICE AUTOCORRELATION FUNCTION
whose properties are well known and their relevance in mod-
eling price fluctuations is testified by a series of models, as One of the well-known facts about financial data series is

mentioned in the Introduction. the negative short-time autocorrelation of price chari§és
Our approximation will consist first in replacing the ma- Here, we will show how this effect naturally emerges from

trices T. by the averagel=%(T,+T_) and furthermore, the matrix nature of our stochastic process. .
. . . — We will compute the autocorrelation function defined as
we will take only the highest eigenvalue of the matilix

in the stationary state.

which is 3/2. Then, instead of a pair of price changesand (X(OX(t+ 7))
X_ we have a single scalar quantitydescribing the absolute C(t,t+7)= > > , (14
value of the price change. VOO (X (t+ 7))

Note that the same results can be obtained by assumin\ﬁh is th Lori h . dr=
from beginning, thak, =x_, i.e., that the density of states erex(t) is the actual price change at timandr=1. We

is equal on both sides of the price level. This means, that Wé"i” denote M(t) e{_S’T+ T} the matrix desc,r!bing thg ac-
make a further “mean-field” approximation, suppressing nottion performed at time andPy (M) its probability distribu-
only the fluctuations along the price axis, but also fluctua—tlon' Of course, we m_troduced alreadf (T-)=Pu(T+)
tions from one side to the other of the already averaged der= (1 ~P)/2 andPy(S)=p. _ _
sity of states. Now we introduce the function of taking the price change
X_

This way we define our multiplicative random process.from the vectorX=(")

The fact that there is a small but finite offgkin placing the

limit orders ensures that the valuesxof (therefore, also of XX;M)=x, if M=T,
x) cannot be smaller thad. This feature plays the role of
“repulsion from zero,” which was found essential for estab- =0 if M=S (15
lishing the power-law tail$42,45 and is usually guaranteed
by the additive ternj43,44. =x_ if M=T_
For the probability distribution of the price changes we
obtain Note that the operatot’ is linear in the argumenX. Then
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(X(t)x(t+r))=f dX Py (X)C(X), (16)

where

C(X) =ME >

) M(t+ )i

[[ Pu(M(t+))

X AGM (D) MM (t+7—1) - - - M(H)X; M(t+ 7).
17

We find easily, using the linearity of the operattrand
introducing the sign vectde=(1,—1)

—1
C(X)——E(Z Pu(M) ) (X, T —X_T_)X.
(18)

The multiplication byE extracts only the lower one of the

two eigenvalues of the averaged matrix

p 1-p
> Pu(M)M= (l_p 1+p)- (19)
The lower eigenvalue ip, hence
CX)==(1=p)p" s x_ (20
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distribution forx.,, x_ with finite moments, the moments
will remain finite for any finite time and we naturally expect
that the ratio of the second moments will converge to a finite
value even if the second moments themselves diverge.

VI. CONCLUSIONS

In conclusion, we solved in the mean-field approximation
the Maslov model of stock market fluctuations. We found a
stationary distribution of price changes with a power-law tail
with the exponent + =2, which is within the Ley stable
region. We found negative short-time autocorrelation of the
price changes, decaying exponentially with time. The relax-
ation time depends on the relative frequency of putting mar-
ket orders and limit orders: the decay is slower if a market
order comes only after more limit orders. This is intuitively
clear, because it is the market order that ensures the liquidity.

Our result differs in two important points from the simu-
lations of Maslov[35]. First, the numerical value of the
power-law tail exponent is different. This can be attributed to
the approximation we made in the form of the density of
ordersp(x). Indeed, we assumed, as a zero approximation,
constant density. On the other hand, it is known from the
solution of the reaction-diffusion model of marKét7] that
the density may have complicated nontrivial form. Another
source of the difference may be the neglect of fluctuations.

Another difference consist in lacking the second power-
law regime for small price changes. However, as discussed

We can calculate similarly the corresponding expressiorn Ref.[35], this second and different power law comes from

for the denominator of Eq15). We obtain at the end
1 2AXeX-)

C(t,t+7’):—p B m

(21)

We can clearly observe the negative autocorrelation that

the fact, that the new limit orders may be placed farther than
the reach of the price change. As we implicitly supposed that
the new orders are put to very small distarccdrom the
current price, we can observe only the distribution for price
changes larger thath
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