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Mean-field approximation for a limit order driven market model
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A mean-field variant of the model of limit order driven market introduced recently by Maslov is formulated
and solved. The agents do not have any strategies and the memory of the system is kept within the order book.
We show that the evolution of the order book is governed by a matrix multiplicative process. The resulting
stationary distribution of step-to-step price changes is calculated. It exhibits a power-law tail with exponent 2.
We obtain also the price autocorrelation function, which agrees qualitatively with the experimentally observed
negative autocorrelation for short times.
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I. INTRODUCTION

The complexity of market behavior, seen as a particu
example of a natural phenomenon, has fascinated physi
for many years@1#. The main source of interest comes fro
a kind of critical behavior, made explicit by the power-la
distribution and scaling in the economic time series, fi
observed by Mandelbrot~see Ref. @2#, and references
therein! and studied in detail by Mantegna and Stanley@3–5#
and subsequently by many others~see, e.g., Refs.@6–11#!.

Scaling and multifractal properties call for an explanati
in terms of a model mimicking the behavior of individu
agents in the market. The physicist’s optimism in looking
such a model might be strengthened by recent success
modeling other social phenomena, e.g., in the cellu
automata models of traffic@12#. The idea consists in assum
ing that the overwhelming complexity of a human being
irrelevant in certain special conditions: when driving a c
only a very basic set of behaviors is at work. Similarly, it
assumed that a trading agent, when put on the floor, follo
only a limited set of instincts or acquired patterns. Therefo
in this approach, the economic complexity is not due to
intrinsic complexity of each agent~as usual hand-waving
arguments by liberal opponents of ‘‘reductionism’’ state!,
but an emergent property of a large set of nonlinearly in
acting simple units.

Many microscopic stock market models have emerg
during the last several years. One of the first ones was
model introduced by Levy, Levy, and Solomon@13–15#,
which captures essential features of the price fluctuations
explains also the power-law distribution of investor’s weal
which is the famous Pareto law.

Another approach was used in the model of Bak, P
zuski, and Shubik@16#: buyers and sellers are represented
particles subject to a reaction-diffusion process. The in
duction of a nontrivial strategy of the agents leads to a re
istic value of the Hurst exponent for the price fluctuations
simpler version of the model was then solved analytica
@17#. A variety of other approaches were investigated@18–
34#.

The above mentioned models mainly do not take into
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count the realistic details of the price formation through t
book of orders. This mechanism was implemented in
model set up by Maslov@35# and a similar perspective wa
then used in a recent series of papers by Matassini and Fr
@36–38#. The book of orders perspective to market modeli
was empirically investigated in Refs.@39,40#.

With such a diversity of models, most of which give
plausible explanation of observed facts, a question ari
whether there is a common mechanism behind various
proaches, making them essentially equivalent. Indeed, it
found that such a mechanism may be the multiplicative s
chastic process repelled from zero, or the multiplicativ
additive process. It was studied thoroughly by various
thors and in diverse contexts@15,41–52#. The goal we pose
in this work is to show that essentially the same mechan
is responsible for the power-law distribution of price chang
also in the limit order model.

II. LIMIT ORDER DRIVEN MARKET MODEL

Recently, Maslov and co-workers@35,39# proposed a
model, based on the assumption that there are two kind
market participants. Prudent investors place their orders
prescribed price and a trade occurs as soon as there is an
accepting that price. On the other hand, speculators buy
sell at any moment at the price which is available in t
market. The price signalp(t) was found to have a power-law
spectrum, with Hurst exponentH51/4. The price changes
during a unit time intervalx5p(t11)2p(t) have probabil-
ity distribution that follows clear power lawP(x)
;x2(11a) in two regimes. For smallx the exponent is 1
1a150.660.1, while in the regime of large price chang
the exponent is 11a25360.2. These values are to be com
pared to the experimentally found values 11a1.2.5 and 1
1a2.4, respectively@6,9–11#.

The presented model@35# can be described as follows
There are orders to buy and sell placed on a straight l
which is the axis of the pricex. In a stable situation, all buy
orders are lower than all sell orders, so that we can desc
the state by single functionr(x), density of the orders, and
numberj, which is the last realized price. Then, allx,j
correspond to buy, allx.j to sell orders.

Two events can change the state. First, new limit ord
may be dropped, such thatr(x)→r(x)1h(x2j). We sup-
©2001 The American Physical Society36-1
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pose the functionh(x) is equal in all events and is symme
ric, h(x)5h(2x). Second, a market-price order can arriv
An order to buy an amounts results in clearing all sell order
up to the pricej1x1 , where

E
j

j1x1

r~x!dx5s. ~1!

The new price is thenj→j1x1 , so thatx1 is the price
increment, while the new density isr(x)→@12u(x
2j)u(j1x12x)#r(x). Analogical formulas will hold for
the sell order.

As we can see, there are no strategies that would lead
agents to perform specific actions. The model is barely
chastic. The long-term memory of the system and thu
possible power-law behavior stems from the order book
the time-dependent density functionr(x) that may keep ar-
bitrarily old orders.

III. MATRIX FORMULATION

Our essential approximation to this model will consist
supposing a uniform density of orders on each side from
current price levelj. In reality, both dropping new limit
orders and clearing them by market orders make the den
of states uneven and fluctuating. When supposing that a
an event the uniform density of states is restored, we ma
kind of ‘‘mean-field’’ approximation: the actual position o
each limit order is not important, as if they were freely mo
ing particles making an effective medium, within which th
price fluctuates. A high density of the medium will result
smaller price fluctuations and vice versa.

The density on the upper side will be denotedr1 , on the
lower sider2 . It is convenient to describe the densities
terms of the potential price changes, which would occur
market-price order arrives. They are simplyx15s/r1 for
buy andx25s/r2 for sell order. The numbersx6 form a
vector

X5S x1

x2
D ,

which performs a stochastic process, as the densitiesr6 and,
therefore, the numbersx6 are updated after arrival of eac
order. The dynamical rules of the process represent a sim
fied version of the limit order driven dynamics.

There are three types of events:~i! dropping of limit or-
ders, ~ii ! market-price order to buy, and~iii ! market-price
order to sell. We suppose that all market-price orders h
the same volumes and all limit order events the same vo
umev. Further, we assume that market orders to buy and
occur with the same probability. In order to keep the to
number of limit orders constant on an average, we sho
suppose that at a given moment there is a probabilityp
5s/(s1v) to drop a limit order. Each of the market-pric
events~ii ! and~iii ! have then an equal probability (12p)/2.
~Here we tacitly assume that the limit orders that are not
last forever. One can also investigate some realistic varia
where the limit orders slowly die out.!
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Let us investigate first the consequence of an arrival o
market-price order to buy. By definition, the price level i
creases byx1 . As the density of orders is constant, avera
density on the right-hand side from the new price is u
changed. If now another buy order arrives, it finds the sa
density and the price change is the same too. Therefore
new value ofx1 is equal to the old one,x1→x1 . On the
other hand, if now a new market order to sell arrives, th
are no limit orders in the interval of widthx1 below the
current price level, and when we go further down, there i
constant densitys/x2 . As a result, the price decreases
x11x2 . Hence, the new value ofx2 is x2→x11x2 .

To sum it up, the effect of the buy order consists in t
replacement

x1→x1

~2!
x2→x11x2 .

It can be expressed in matrix form

X→X85T1X ~3!

where

T15S 1 0

1 1D . ~4!

Similarly, for the action of a sell order we get

X→X85T2X, ~5!

where

T25S 1 1

0 1D . ~6!

Now we turn to the changes due to dropping limit orde
It is necessary to specify the functionh(x), representing the
average volume of orders set at distancex from the current
price. As we already mentioned, we suppose it to be an e
function. Moreover, the volume was supposed to be fix
*h(x)dx5v. We apply here the simplest choiceh(x)
5v/2(d(x2d)1d(x1d)), which means that all new order
are placed at the same distanced from the current price,
either below~buy! or above~sell!. This distribution reflects
the fact that the limit orders are not typically set arbitrar
close to the current price but there is a certain minim
offset d.

Dropping limit orders affects the vectorX according to
the formula

x6→ 1

2
~321/p! x6. ~7!

Indeed, a buy~or sell! order will annihilate the amountv/2
from the just deposited limit order and amounts2v/2 from
the original density of old limit orders. The shift is, therefor
x65(s2v/2)/r6 . Writing v in terms of the probabilityp,
i.e., v5(1/p21)s, we obtain the formula~7!. So, in matrix
form we have
6-2
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MEAN-FIELD APPROXIMATION FOR A LIMIT ORDER . . . PHYSICAL REVIEW E 64 056136
X→X85SX, ~8!

where

S5
1

2 S 32
1

pD S 1 0

0 1D . ~9!

The price changes only after a market order is issu
while dropping limit orders leaves the price unchanged.
between two subsequent shifts of the price,m>0 limit or-
ders can arrive, with probabilityPm(m)5(12p)pm. The
change of the vectorX due to one market order andm limit
orders isX→Sm T6 X. When calculating the evolution of th
probability distribution forX, we should sum over all pos
sible realizations. Hence, the probability distribution for t
vectorX should satisfy the equation

PX~X!5
1

2 (
s56

(
m50

` E dX8 Pm~m!PX~X8!d~X2Sm Ts X8!

~10!

in the stationary state.

IV. DISTRIBUTION OF PRICE CHANGES

We will make a further approximation at this stage. T
matrix S is simply a unit matrix multiplied by a constant.
the same were true also for the matricesT6 , the process
would be reduced to a simple multiplicative random wa
whose properties are well known and their relevance in m
eling price fluctuations is testified by a series of models,
mentioned in the Introduction.

Our approximation will consist first in replacing the m
trices T6 by the averageT̄5 1

2 (T11T2) and furthermore,
we will take only the highest eigenvalue of the matrixT̄,
which is 3/2. Then, instead of a pair of price changesx1 and
x2 we have a single scalar quantityx, describing the absolute
value of the price change.

Note that the same results can be obtained by assum
from beginning, thatx15x2 , i.e., that the density of state
is equal on both sides of the price level. This means, that
make a further ‘‘mean-field’’ approximation, suppressing n
only the fluctuations along the price axis, but also fluctu
tions from one side to the other of the already averaged d
sity of states.

This way we define our multiplicative random proces
The fact that there is a small but finite offsetd in placing the
limit orders ensures that the values ofx6 ~therefore, also of
x) cannot be smaller thand. This feature plays the role o
‘‘repulsion from zero,’’ which was found essential for esta
lishing the power-law tails@42,45# and is usually guarantee
by the additive term@43,46#.

For the probability distribution of the price changes w
obtain
05613
d,
,

,
-
s

ng

e
t
-
n-

.

P~x!5 (
m50

`

~12p!pmE dx8P~x8!

3dS x2
3

2
x8S 32

1

p

2
D mD ~11!

and assuming a power-law tail of the probability distributi
in the formP(x);x212a, we obtain the following equation
for the exponent:

(
m50

`

~12p!pmF 3

2
S 32

1

p

2
D mG a

51. ~12!

As can be easily checked, apart from the trivial soluti
a50, it has a nontrivial solutiona51, independent ofp.
Therefore, the distribution of price changes has a power-
tail

P~x!.x22. ~13!

Note that the calculation could be further simplified b
writing the equation analogical to Eq.~11!, relating the prob-
ability distribution just after single step. Then, instead of t
sequence of steps consisting of one market order followed
m limit orders we have one step being either limit or mark
order. This equation gives precisely the same power-law
However, such an approach is slightly inconsistent, beca
setting a limit order does not imply any trade, thus the pr
change at this moment is zero.

V. PRICE AUTOCORRELATION FUNCTION

One of the well-known facts about financial data series
the negative short-time autocorrelation of price changes@6#.
Here, we will show how this effect naturally emerges fro
the matrix nature of our stochastic process.

We will compute the autocorrelation function defined a

C~ t,t1t!5
^x~ t !x~ t1t!&

A^x2~ t !&^x2~ t1t!&
, ~14!

wherex(t) is the actual price change at timet andt>1. We
will denoteM (t)P$S,T1 ,T2% the matrix describing the ac
tion performed at timet andPM(M ) its probability distribu-
tion. Of course, we introduced alreadyPM(T2)5PM(T1)
5(12p)/2 andPM(S)5p.

Now we introduce the function of taking the price chan
from the vectorX5(x1

x2)

X~X;M !5x1 if M5T1

50 if M5S ~15!

5x2 if M5T2 .

Note that the operatorX is linear in the argumentX. Then
6-3
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^x~ t !x~ t1t!&5E dX PX~X!C̃~X!, ~16!

where

C̃~X!5 (
M (t)

••• (
M (t1t)

)
i 50

t

PM„M ~ t1 i !…

3 X„X;M ~ t !) X~M ~ t1t21!•••M ~ t !X;M ~ t1t!….

~17!

We find easily, using the linearity of the operatorX and
introducing the sign vectorE5(1,21)

C̃~X!5
12p

2
ES (

M
PM~M !M D t21

~x1T12x2T2!X.

~18!

The multiplication byE extracts only the lower one of th
two eigenvalues of the averaged matrix

(
M

PM~M !M5
1

2 S 11p 12p

12p 11pD . ~19!

The lower eigenvalue isp, hence

C̃~X!52~12p!pt21x1x2 . ~20!

We can calculate similarly the corresponding express
for the denominator of Eq.~15!. We obtain at the end

C~ t,t1t!52pt21
2^x1x2&

^x1
2 &1^x2

2 &
. ~21!

We can clearly observe the negative autocorrelation
decays with characteristic time that depends on the rela
frequency of putting the limit and market orders, measu
by the probabilityp. The result obtained suffers from th
divergence of second moments of the variablesx1 , x2 ,
resulting from the power-law tail calculated in the last se
tion. However, only the ratio of the moments enter the f
mula ~21!. Moreover, if we suppose as an initial condition
,
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distribution for x1 , x2 with finite moments, the moment
will remain finite for any finite time and we naturally expe
that the ratio of the second moments will converge to a fin
value even if the second moments themselves diverge.

VI. CONCLUSIONS

In conclusion, we solved in the mean-field approximati
the Maslov model of stock market fluctuations. We found
stationary distribution of price changes with a power-law t
with the exponent 11a52, which is within the Le´vy stable
region. We found negative short-time autocorrelation of
price changes, decaying exponentially with time. The rel
ation time depends on the relative frequency of putting m
ket orders and limit orders: the decay is slower if a mar
order comes only after more limit orders. This is intuitive
clear, because it is the market order that ensures the liqui

Our result differs in two important points from the simu
lations of Maslov @35#. First, the numerical value of the
power-law tail exponent is different. This can be attributed
the approximation we made in the form of the density
ordersr(x). Indeed, we assumed, as a zero approximat
constant density. On the other hand, it is known from
solution of the reaction-diffusion model of market@17# that
the density may have complicated nontrivial form. Anoth
source of the difference may be the neglect of fluctuation

Another difference consist in lacking the second pow
law regime for small price changes. However, as discus
in Ref. @35#, this second and different power law comes fro
the fact, that the new limit orders may be placed farther th
the reach of the price change. As we implicitly supposed t
the new orders are put to very small distanced from the
current price, we can observe only the distribution for pr
changes larger thand.
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